Chapitre 7 : racine carrée. **Exercices.**

Exercice 1:

Dans les exercices 32 à 36, écrire les expressions sous la forme $a\sqrt{b}$, où a et b sont deux nombres entiers avec b le plus petit possible. J'ai écrit

32
$$\sqrt{28}$$
; $\sqrt{54}$; $\sqrt{72}$.

32 $\sqrt{28}$; $\sqrt{54}$; $\sqrt{72}$. $\sqrt{72} = 3\sqrt{8}$, mais ce n'est pas le résultat attendu!

33
$$\sqrt{32}$$
; $\sqrt{150}$; $\sqrt{196}$.

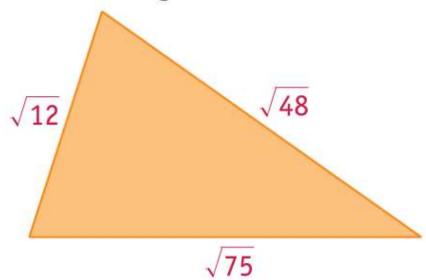
$$14 = 14\sqrt{1}$$
.

34
$$A = 2\sqrt{50}$$
; $B = 3\sqrt{200}$; $C = 4\sqrt{27}$.

35 D =
$$3\sqrt{32}$$
; E = $6\sqrt{45}$; F = $7\sqrt{72}$.

36
$$A = \sqrt{6} \times \sqrt{21}$$
; $B = \sqrt{\frac{80}{13}} \times \sqrt{\frac{39}{4}}$.

Exercice 2:


Dans chaque cas, déterminer si les nombres A et B sont égaux. Justifier la réponse.

a
$$A = 2\sqrt{63}$$
 et $B = 3\sqrt{28}$;

b
$$A = 5\sqrt{24}$$
 et $B = 4\sqrt{150}$.

Exercice 3:

L'unité de longueur est le centimètre.

Calculer le périmètre du triangle. Donner le résultat sous la forme $a\sqrt{3}$, où a est un nombre entier.

Exercice 4:

- **1)** Calculer $(4\sqrt{5})^2$; $(3\sqrt{2})^2$; $4\sqrt{5} \times 3\sqrt{2}$.
- 2) En utilisant les résultats de la première question, développer et réduire $(4\sqrt{5} + 3\sqrt{2})^2$.

Exercice 5:

Développer et réduire.

a
$$(2\sqrt{3} + 5)^2$$
;
b $(3\sqrt{5} - 2\sqrt{7})^2$;
c $8\sqrt{3}(12 - 10\sqrt{7})$;
d $(9\sqrt{6} - 4)(8 + 7\sqrt{2})$.

Exercice 6:

On considère $A = 3x^2 - 10x + 5$.

Calculer A pour $x = \sqrt{27}$ et donner le résultat sous la forme $a + b\sqrt{3}$, où a et b désignent des nombres entiers relatifs.

Exercice 7:

Centres étrangers 2004

On pose $E = 14x^2 - 25x + 6$.

Calculer E pour $x = \sqrt{45}$ et donner le résultat sous la forme $a + b\sqrt{5}$, où a et b désignent des nombres entiers relatifs.

Exercice 8:

Un rectangle *MATH* a pour longueur $\sqrt{14}$ cm et pour largeur $\sqrt{11}$ cm.

Démontrer que la longueur d'une diagonale est un nombre entier.

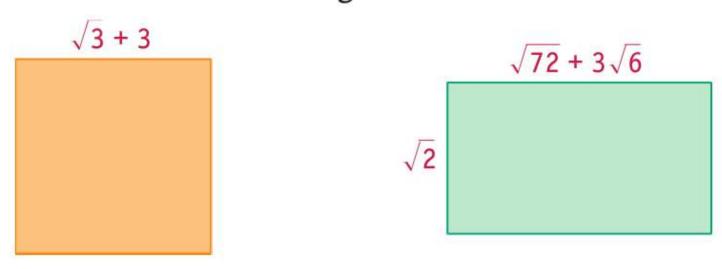
Exercice 9:

On considère : $A = \sqrt{27}$; $B = \sqrt{48}$; $C = \sqrt{108}$.

- 1) Démontrer que $\frac{C}{A}$ est un nombre entier.
- 2) Démontrer que $\frac{A}{B}$ est une fraction.

Exercice 10:

Préciser si chacun des nombres suivants est un nombre rationnel. Justifier la réponse.


$$\frac{3\sqrt{8}-2\sqrt{32}}{7}$$
;

b
$$\frac{2\sqrt{12}-5\sqrt{75}}{3\sqrt{3}}$$
.

Exercice 11:

Pondichéry 2006

Toutes les longueurs sont exprimées en cm. La mesure du côté du carré orange est $\sqrt{3} + 3$. Les dimensions du rectangle vert sont $\sqrt{72} + 3\sqrt{6}$ et $\sqrt{2}$.

- 1) Calculer l'aire A du carré; réduire l'expression obtenue.
- 2) Calculer l'aire A' du rectangle.
- **3)** Vérifier que $\mathcal{A} = \mathcal{A}$.

Exercice 12:

Nouvelle Calédonie 2005

Calculer A et B et présenter les résultats sous la forme $a\sqrt{b}$, où a et b sont deux nombres entiers et b le plus petit possible.

A =
$$3\sqrt{45} + 2\sqrt{20} - 4\sqrt{80}$$
;
B = $\sqrt{18} \times \sqrt{8} \times \sqrt{50}$.

Exercice 13:

Nice 2004

B =
$$\sqrt{300} - 4\sqrt{27} + 6\sqrt{3}$$
;
C = $(5 + \sqrt{3})^2$;
D = $(\sqrt{2} + \sqrt{5})(\sqrt{2} - \sqrt{5})$.

- **1)** Écrire B sous la forme $b\sqrt{3}$, où b est un nombre entier.
- 2) Écrire C sous la forme $e + f\sqrt{3}$, avec e et f entiers.
- 3) Montrer que D est un nombre entier relatif.