Chapitre 6:

Relations trigonométriques dans le triangle rectangle.

I - Rappel: cosinus d'un angle aigu.

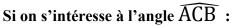
1) Vocabulaire:

Soit ABC un triangle rectangle en A. Le côté opposé (face) à l'angle droit est l'hypoténuse. Ici c'est

Si on s'intéresse à l'angle \widehat{ABC} :

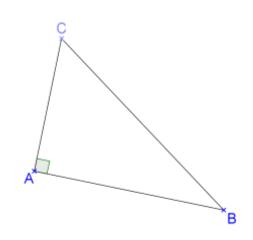
Le côté opposé à l'angle \widehat{ABC} est [AC].

Le côté adjacent à l'angle \widehat{ABC} est [AB].



Le côté opposé à l'angle \widehat{ACB} est [AB].

Le côté adjacent à l'angle \widehat{ACB} est [AC].



Remarque: $\widehat{ABC} + \widehat{ACB} = 90^{\circ}$ On dit que ces deux angles sont **complémentaires**.

2) Formule du cosinus (4^{ème}).

Définition:

Soit ABC un triangle rectangle en A.

On appelle cosinus de l'angle ABC, le quotient de la longueur du côté adjacent à l'angle ABC par la longueur de l'hypoténuse.

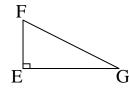
On a :
$$\cos \widehat{ABC} = \frac{BA}{BC}$$

et
$$\cos \widehat{ACB} = \frac{CA}{CB}$$

Remarque: Comme l'hypoténuse est le plus grand côté, le cosinus d'un angle est toujours plus petit que 1.

3) Exemples.

a) Soit EFG rectangle en E tel que $\widehat{EGF} = 35^{\circ}$ et FG = 5 cm. Calculer EG.



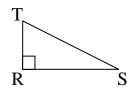
Dans le triangle EFG rectangle en E, on a : $\frac{\cos 35^{\circ}}{1} = \frac{EG}{5}$

$$\cos \widehat{EGF} = \frac{EG}{GF}$$

$$\frac{\cos 35^{\circ}}{1} = \frac{EG}{5}$$

d'où EG =
$$5 \times \cos 35^{\circ} \approx 4.1$$
 cm

b) Soit RST rectangle en R tel que RS = 10 cm et ST = 12 cm. Calculer $\widehat{\text{RST}}$. Arrondir au dixième.



Dans le triangle RST rectangle en R, on a :

$$\cos \widehat{RST} = \frac{RS}{ST}$$

donc
$$\cos \widehat{RST} = \frac{10}{12} = \frac{5}{6}$$

A l'aide de la calculatrice, on a : $\overline{RST} \approx 33.6^{\circ}$

$$2^{\text{nd}}$$

<u>II – Sinus et tangente.</u>

Formules.

$$cos = \frac{(côté\ adjacent)}{(hypoténuse)}$$

$$sin = \frac{(\cot \acute{e}.oppos\acute{e})}{(hypot\acute{e}nuse)}$$

$$tan = \frac{(\cot \acute{e}.oppos\acute{e})}{(\cot \acute{e}.adjacent)}$$

Trois moyens mnémotechniques : CA SO TO

SOH CAH TOA

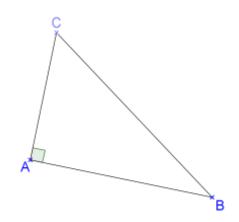
CAH SOH TOA

Soit ABC un triangle rectangle en A.

$$\cos \widehat{ABC} = \frac{AB}{BC}$$

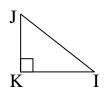
$$\sin \widehat{ABC} = \frac{AC}{BC}$$

$$\tan \widehat{ABC} = \frac{AC}{AB}$$



2) Exemples (on arrondira au dixième près):

a) Soit IJK rectangle en K tel que IJ = 8 cm et \widehat{IIK} = 50°. Calculer KJ.

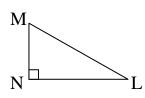


Dans le triangle IJK rectangle en K, on a : $\sin \widehat{IIK} = \frac{KJ}{II}$

donc $\frac{\sin 50^{\circ}}{1} = \frac{KJ}{8}$

d'où KJ = $8 \times \sin 50^{\circ} \approx 6.1$ cm

b) Soit LMN rectangle en N tel que LN = 6,5 cm et NM = 3 cm. Calculer \widehat{LMN} puis \widehat{MLN}



Dans le triangle LMN rectangle en N, on a :

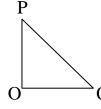
- a) $\tan \widehat{LMN} = \frac{LN}{MN}$
- donc $\tan \widehat{LMN} = \frac{6.5}{3}$

A l'aide de la calculatrice, on a : $\widehat{LMN} \approx 65,2^{\circ}$.

- b) $\tan \widehat{MLN} = \frac{MN}{LN}$
- donc $\tan \widehat{MLN} = \frac{3}{6.5}$

A l'aide de la calculatrice, on a : $\widehat{LMN} \approx 24.8^{\circ}$.

c) Soit OPQ rectangle en O tel que OP = 5 cm et QP = 7 cm. Calculer $\overline{O}Q\overline{P}$.



Dans le triangle OPQ rectangle en Q, on a :

- $\sin \widehat{OQP} = \frac{OP}{PO}$
- donc $\sin \widehat{OQP} = \frac{5}{7}$

A l'aide de la calculatrice, on a : $\widehat{OQP} \approx 45,6^{\circ}$.

III - Deux relations fondamentales de trigonométrie (sur l'iPad).

TP sur tableur : iPad (Numbers).

Objectif: Conjecturer deux relations entre $\cos x$, $\sin x$ et $\tan x$.

Ouvrir une feuille de calcul vierge et reproduire le tableau ci-dessous.

1ère colonne: Pour aller de 5 en 5 écrire 0 et 5 puis cliquez sur OK.

Sélectionner les 2 cellules qui contiennent 0 et 5. Cliquer sur remplissage puis tirer vers le bas jusqu'à 90°.

Angle x (en *)	Angle x (en rad)	COS X	sin x	tan x	zin (x) coz (x)	(cos x) ^z	(sin x) ^z	(cos x) ² +(sin x) ²
0								
5								
10								
80								
85								
90								

2ème colonne (Angle x (en rad)) : Attention il faut transformer les degrés en radians !

Pour cela, utiliser la **fonction radians** (appuyer sur =) pour convertir les degrés en radians. On convertit d'abord l'angle de 0° puis, en sélectionnant remplissage, on tire vers le bas pour convertir les autres angles.

3^{ème}, 4^{ème} et 5^{ème} colonnes: utiliser les fonctions cos, sin et tan pour l'angle de 0° et le remplissage pour copier les formules vers le bas (il faut prendre les angles en radians).

Pour utiliser les formules cos, sin et tan il faut cliquer sur = puis fonctions.

 $6^{\text{ème}}$ colonne: pour calculer $\frac{\sin x}{\cos x}$ pour l'angle de 0° , il faut utiliser la touche \div . Utiliser le remplissage pour compléter le reste de la colonne.

7^{ème} et 8^{ème} colonnes : utiliser la fonction produit pour obtenir les carrés. Puis remplissage pour copier vers le bas.

9ème colonne: utiliser la fonction somme pour obtenir les sommes. Puis remplissage pour copier vers le bas.

On peut conjecturer que :

$$tan x = \frac{sin x}{cos x}$$
 $et (cos x)^2 + (sin x)^2 = 1$

2) Démonstration.

$$\cos \widehat{ABC} = \frac{AB}{BC}$$

donc (cos
$$\widehat{ABC}$$
)² = ($\frac{AB}{BC}$)² = $\frac{AB^2}{BC^2}$

$$\sin \widehat{ABC} = \frac{AC}{BC}$$

$$\sin \widehat{ABC} = \frac{AC}{BC}$$
 donc $(\sin \widehat{ABC})^2 = (\frac{AC}{BC})^2 = \frac{AC^2}{BC^2}$

$$(\cos \widehat{ABC})^2 + (\sin \widehat{ABC})^2 = \frac{AB^2}{BC^2} + \frac{AC^2}{BC^2} = \frac{\frac{Th\acute{e}or\grave{e}me \ de \ Pythagore}{AB^2 + AC^2}}{BC^2} = \frac{BC^2}{BC^2} = 1$$

Conclusion, quel que soit le nombre x: $(\cos x)^2 + (\sin x)^2 = 1$

